|
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 . \" z* q+ t. W' ]
+ r- g( X8 j1 }2 j8 w2 R
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下載次數(shù): 6)
2015-1-9 22:29 上傳
點(diǎn)擊文件名下載附件
第一部分 下載積分: 威望 -10 點(diǎn)
# R, [+ s- p% ]
. x' u* p7 M! P$ j
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下載次數(shù): 6)
2015-1-9 22:33 上傳
點(diǎn)擊文件名下載附件
第二部分 下載積分: 威望 -10 點(diǎn)
9 k" m: p1 ~. a* K. v8 d- r
) |) C6 j6 M! T" J目錄
3 d0 _% ~/ o/ k# Z' @4 D3 U6 d0 J# `& H; Q5 l
Contents8 E$ l; A! N" R3 ^
1 n2 B( K4 k2 }* w! O/ g! |
Preface page xvii
0 G/ k! K# W+ l9 e( {- V# x1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1# q& ?0 ]0 K, ^# D J4 d# p
1.1 Viscoelastic Phenomena 14 m' C- y- K& x. s2 ?! G
1.2 Motivations for Studying Viscoelasticity 3" {% c: ?* `+ E+ t4 q$ j9 ]2 f5 z
1.3 Transient Properties: Creep and Relaxation 3+ h' o# v! z7 }; p' E
1.3.1 Viscoelastic Functions J (t), E(t) 3
9 p& d7 L& \, ]" R! T Z4 z1.3.2 Solids and Liquids 7
7 n7 n" O9 V3 D( _1 p7 l- x* \1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
; N5 l3 t2 Y7 \; M1 X1.5 Demonstration of Viscoelastic Behavior 105 g0 I _/ a8 `9 m, ]
1.6 Historical Aspects 10% b$ h0 t; V5 K. {
1.7 Summary 11
# M& k' a* R( ^6 G1.8 Examples 11
: t% p( N5 q( C% |6 r8 N3 I1.9 Problems 122 Q2 g2 G) g1 E: D9 }, X5 g
Bibliography 124 U+ d/ ]2 s4 o) K
- `. U; \% T( ^* T' S( @
! ~) F' B4 C/ s/ P7 v* Y& a+ T. D. Q9 D: ]" _: B
% M( L7 X& V6 [- F
) x" `7 E* ]: {7 f7 g! E9 k
7 V& c% K& S& _$ S& B( O7 I8 i
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 b8 F' y+ K6 ^9 f" s
2.1 Introduction 14* M( w' _5 y% y& Z8 I) [0 z) z1 g& ?, m0 T
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
/ F ]) e# E! p A2.2.1 Prediction of Recovery from Relaxation E(t) 14
' [* F$ I5 Y d* @9 b4 [9 P2.2.2 Prediction of Response to Arbitrary Strain History 15
: L) R' u8 ~: u# E( b2.3 Restrictions on the Viscoelastic Functions 17! `( Q0 l h; U# L( |
2.3.1 Roles of Energy and Passivity 173 S; ^; H4 K) V+ }
2.3.2 Fading Memory 18; \5 ^% [3 w+ r4 x9 ]+ E0 z
2.4 Relation between Creep and Relaxation 19: F% H) J# H3 S( a0 u7 f
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
' c4 q; x. h7 S1 S* ?2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20 J2 A# b* N8 G* X
2.5 Stress versus Strain for Constant Strain Rate 20
7 }' I. E* q! _7 j4 J: J, ]2.6 Particular Creep and Relaxation Functions 21; R! S- ?; V. O' ?5 N4 q
2.6.1 Exponentials and Mechanical Models 21. o0 V6 Q _# m! Z! z' Y
2.6.2 Exponentials and Internal Causal Variables 26* u* q; {7 L6 r8 F/ A0 D
2.6.3 Fractional Derivatives 27+ g* ]' {0 l a% R: w
2.6.4 Power-Law Behavior 28. X# E# f7 e# s( ~
2.6.5 Stretched Exponential 293 a& [6 J% M4 N# Q% C' A, o2 X
2.6.6 Logarithmic Creep; Kuhn Model 29
( E9 M3 x m$ _+ ]2 L s, u2 }2.6.7 Distinguishing among Viscoelastic Functions 308 }/ B* h0 U. u2 }
2.7 Effect of Temperature 30! t# [/ s7 j/ U. N$ d
2.8 Three-Dimensional Linear Constitutive Equation 33
1 R2 d# S9 d$ a2.9 Aging Materials 35
9 q' `" _% l- Q+ |2.10 Dielectric and Other Forms of Relaxation 35
0 L0 x; G: o. S8 v. F \2.11 Adaptive and “Smart” Materials 36
6 e) ]. ^6 [2 z8 w6 V2.12 Effect of Nonlinearity 378 Q2 H" f" R0 K: ?$ c
2.12.1 Constitutive Equations 37
) C8 ~9 X7 g; m5 R4 C$ @2.12.2 Creep–Relaxation Interrelation: Nonlinear 404 P& M; K4 K2 n% W; S z6 @% {
2.13 Summary 43
1 r7 Q5 s' k5 w4 M2.14 Examples 432 M) O) X8 \9 ^
2.15 Problems 51
1 z L! H" V8 w9 X! hBibliography 526 e' v- G' @; r* S) c' F& d
' l4 u# s% ?2 d/ S5 Y, I. s6 h# B Z7 V+ t& ~
0 q" M7 f i; }# i% ?9 n S
* Z, e5 d, |: ]; R) W* v$ m9 g3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3 d# a) ?) v# _) f; @5 D/ N3.1 Introduction and Rationale 55& { P. f8 F! ~9 P8 _; e
3.2 The Linear Dynamic Response Functions E∗, tanδ 56$ H5 J9 [% {4 n. h
3.2.1 Response to Sinusoidal Input 579 a9 o" S' D- V9 a
3.2.2 Dynamic Stress–Strain Relation 59
3 t# \6 X( v: ]/ A8 j! \3.2.3 Standard Linear Solid 62 A- q8 z6 l1 b' R) z
3.3 Kramers–Kronig Relations 63( u/ R' d! r- G! n* _% S7 Z
3.4 Energy Storage and Dissipation 65
+ z- K( ~8 N$ K! ]3.5 Resonance of Structural Members 675 T( q$ q2 e N8 W
3.5.1 Resonance, Lumped System 67* R: a D7 t' u# M" |) j
3.5.2 Resonance, Distributed System 71# J+ z. K" O; o W: w; x, _
3.6 Decay of Resonant Vibration 74# P9 q. {- D( N6 T
3.7 Wave Propagation and Attenuation 77
3 y6 {5 {; E* A3 M; G1 [- O3.8 Measures of Damping 79
' x# A7 P$ s" R% Q9 y7 w3.9 Nonlinear Materials 79
7 U' Y3 M% p+ \1 x+ |3.10 Summary 81
# v3 Z: t( b2 n: U: Z. B. V% k8 y2 ?3.11 Examples 81. N& Y) T: b x5 [
3.12 Problems 88
! G3 p! d m5 c& `% [* r% f) Z0 Y+ aBibliography 89* k) D- r6 i0 W" e
! [: ^9 r. g. H% y% ?1 c, u% V6 V: M# [
( }# Q. m7 i5 j. l1 z8 ^2 y }0 Y
( v* y Z2 X1 F$ O+ c2 {4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
" A. b# G/ N8 j E; E/ b& `4.1 Introduction 91
) s) X: n( |: u! V4.2 Spectra in Linear Viscoelasticity 920 k* V. |6 n! _% P# S
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92# a' F+ y3 S% f/ }
4.2.2 Particular Spectra 93
- ?; |7 m! K) F- E% N5 o4.3 Approximate Interrelations of Viscoelastic Functions 95! ~; q* T s2 V/ ]$ F$ f/ T
4.3.1 Interrelations Involving the Spectra 95) R+ D1 n. ?' G3 ]) ^: h
4.3.2 Interrelations Involving Measurable Functions 98
R/ n3 o) J; n- k4.3.3 Summary, Approximate Relations 101" R) m7 h+ I/ \, H! K
4.4 Conceptual Organization of the Viscoelastic Functions 101
! K% ]" o. W# t0 I4.5 Summary 104
) k6 p+ K0 d& A+ Y( h4.6 Examples 104
/ J! Y) c) `+ ^+ U4.7 Problems 109
# z; ?' l6 B6 ^* c. Z4 gBibliography 109
# r1 R5 X: j; O! u# m2 \
2 N* @1 p- j. l" l# ]0 A
2 p* c) Z1 [$ `( y" ?" l; x+ `+ D8 e4 v r! g `
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
0 f* Y+ d6 C9 z- f/ E8 _5.1 Introduction 111, F$ e6 D4 @2 k! M% Z
5.2 Three-Dimensional Constitutive Equation 111
! X# X [/ q2 x0 D5.3 Pure Bending by Direct Construction 112! o; Z$ a( R; c
5.4 Correspondence Principle 1140 {* O* }) u x3 H/ g. \
5.5 Pure Bending by Correspondence 116
+ N: s) ]) ?9 e- v+ [- e8 P5.6 Correspondence Principle in Three Dimensions 116* b/ A+ `. l1 f3 ?/ O( a
5.6.1 Constitutive Equations 1164 a7 [' R# ]4 U8 M% K w& M
5.6.2 Rigid Indenter on a Semi-Infinite Solid 1175 B; W$ f2 ~5 X' O1 O; [
5.6.3 Viscoelastic Rod Held at Constant Extension 119* L3 {* F3 L8 c- T! B
5.6.4 Stress Concentration 1190 @7 P3 i8 Y' j. t7 v2 f$ S
5.6.5 Saint Venant’s Principle 120% X2 {$ a/ l4 |# P
5.7 Poisson’s Ratio ν(t) 121
' y( D+ N3 X7 y* r7 a# k* l5.7.1 Relaxation in Tension 121( `: O8 u% V9 c, Z$ ]; o/ t
5.7.2 Creep in Tension 1236 p' G8 W7 L* {8 `% k
5.8 Dynamic Problems: Effects of Inertia 124
3 @) C5 Z+ k x1 v7 C: j0 h$ k! ^5.8.1 Longitudinal Vibration and Waves in a Rod 1246 K. f" F* w) W3 D* `
5.8.2 Torsional Waves and Vibration in a Rod 125
" I6 L( d& u/ R8 p( l* i2 f5.8.3 Bending Waves and Vibration 128
# s+ j7 ]8 V& V- E5.8.4 Waves in Three Dimensions 1291 Y8 _ J$ O! B7 e# D2 h: Y, R$ ^
5.9 Noncorrespondence Problems 131( D3 ~2 z3 `$ L! P' V3 v
5.9.1 Solution by Direct Construction: Example 131
- v# _ g, H% t8 c1 U5.9.2 A Generalized Correspondence Principle 132
+ X/ G5 h: @1 ~+ r% T1 `5.9.3 Contact Problems 132. R# }: ^' h0 ~4 \
5.10 Bending in Nonlinear Viscoelasticity 133# d2 z/ L; O6 F. s# ]. k
5.11 Summary 134
$ S% e7 ~1 I5 s/ q8 E/ p; K5.12 Examples 134. e4 Y0 A8 G5 O+ ~1 P# C
5.13 Problems 142
! c; h& e4 L/ m3 g% _/ F% @# pBibliography 142 |5 T& p3 z6 \& J7 z4 h9 _/ i
3 z, T/ m5 P! J( P
: C8 B% p7 ?$ v# z( N: X
& }' r" k) f1 L1 l3 F6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
# U4 S. L Q# B* c5 G) ` u6.1 Introduction and General Requirements 1451 U6 w. Q. g8 N
6.2 Creep 1466 _0 {, V' D2 |. M
6.2.1 Creep: Simple Methods to Obtain J (t) 146" L- p$ U1 h2 h
6.2.2 Effect of Risetime in Transient Tests 146
- W% j( e% H1 m1 f% {0 B6.2.3 Creep in Anisotropic Media 148
- F3 W9 l5 d' n1 p( X: B6.2.4 Creep in Nonlinear Media 148
6 g3 _1 x- Q: j& w9 s0 B6.3 Inference of Moduli 150
5 d2 S; i% z1 Z- T6.3.1 Use of Analytical Solutions 150
4 M2 e7 q" K0 u$ Y1 n* S6.3.2 Compression of a Block 151& N$ K) ^. B: w( ]$ d \
6.4 Displacement and Strain Measurement 152: r/ t' y$ ?* ]0 \3 k
6.5 Force Measurement 156# t+ ~6 b* \$ e' f2 P* t- \
6.6 Load Application 157
5 U+ ^8 h: M' D6 W7 s& {6.7 Environmental Control 157+ Y7 f) {4 L; o9 n4 k
6.8 Subresonant Dynamic Methods 158/ u; R5 i' @$ c' ~; o1 n4 _9 o
6.8.1 Phase Determination 158
" ?7 S1 O7 y6 G- I0 A6.8.2 Nonlinear Materials 1604 l; v) {; S) B; J8 T7 ?* ?
6.8.3 Rebound Test 161
. h; W! u* F" [7 ?' k, F6.9 Resonance Methods 161 W! `$ e( }4 u) K
6.9.1 General Principles 161
) {+ M- C6 z1 D6.9.2 Particular Resonance Methods 163
8 Y7 h* s8 a4 m) Z4 K: O6.9.3 Methods for Low-Loss or High-Loss Materials 166' y, ^% ^: h* ^4 X/ w7 x
6.9.4 Resonant Ultrasound Spectroscopy 1680 ^, q+ }7 S- Y& D4 y
6.10 Achieving a Wide Range of Time or Frequency 1713 E' Q9 K5 h* @. o# m( P! [9 H
6.10.1 Rationale 1719 H6 `! _" [9 q5 C7 G4 Z$ r/ R
6.10.2 Multiple Instruments and Long Creep 172
. z) q9 F$ w& d- e; L6.10.3 Time–Temperature Superposition 172
0 C- r, `& e# ~) g+ c6.11 Test Instruments for Viscoelasticity 173
! p F5 L0 @! T9 Q* T& D6.11.1 Servohydraulic Test Machines 173
/ H9 W' O' r: N7 D( ~5 V6.11.2A Relaxation Instrument 174% t# e; U$ P7 K6 |9 h0 E" F3 S
6.11.3 Driven Torsion Pendulum Devices 174
0 T' z* Y( I5 }6.11.4 Commercial Viscoelastic Instrumentation 178
2 F9 v& t6 f+ H4 ]1 _1 I% c# [- E* R& ^6.11.5 Instruments for a Wide Range of Time and Frequency 1796 I$ Y( A: @+ E# Z' ]( y
6.11.6 Fluctuation–Dissipation Relation 182" _5 C3 d5 |# H+ V/ z
6.11.7 Mapping Properties by Indentation 1833 r% o- \4 z; ?4 b1 s" w
6.12 Wave Methods 184
) L5 O8 ^: C# H9 _1 H" W0 N& g2 g6.13 Summary 1889 Y# U: `: n" ~
6.14 Examples 188
/ N, ?, `( @7 L9 m, G2 M9 M! g& ~0 I6.15 Problems 200 O/ k- L1 D- D% k
Bibliography 2019 {. I3 i4 s1 T0 m
; m: g7 r3 _# b" g* l% ~7 K1 b
2 r j3 }7 u* K( o( B+ }
e3 c0 |7 s' M$ J0 t3 a$ T
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207: W- y3 I( r' i. s7 ]
7.1 Introduction 207
. [' D% Z" N! ^+ R7.1.1 Rationale 207: H! Y$ ~1 V# ?6 |% H7 {
7.1.2 Overview: Some Common Materials 207( E: }1 N+ g- e
7.2 Polymers 208/ h3 [+ O2 v/ Y6 ~* g
7.2.1 Shear and Extension in Amorphous Polymers 2085 t4 x8 [0 W$ T9 E
7.2.2 Bulk Relaxation in Amorphous Polymers 212) o# M4 @# l5 q! K
7.2.3 Crystalline Polymers 2131 A/ \! k) B4 z' X! ?/ J3 N
7.2.4 Aging and other Relaxations 2140 J. `' s5 s! A
7.2.5 Piezoelectric Polymers 2149 q* S; J- Q6 g
7.2.6 Asphalt 214
0 t, H- l& M5 B+ X7.3 Metals 215
8 U# C2 l" X, a4 j* e5 w$ d" ^7.3.1 Linear Regime of Metals 215" |7 V0 F- j3 A8 |* x$ V+ W* k. g
7.3.2 Nonlinear Regime of Metals 217
8 F* Z, {1 v' m/ }4 G$ c/ e7.3.3 High-Damping Metals and Alloys 219- f: Q$ ]8 Z6 D/ z0 \) k
7.3.4 Creep-Resistant Alloys 2248 |0 y" [' e! d8 Y8 Q/ c- z
7.3.5 Semiconductors and Amorphous Elements 225
" @+ L9 Q! s" i' |7.3.6 Semiconductors and Acoustic Amplification 2265 l6 p: ], {- @! N3 o4 C2 Q/ v
7.3.7 Nanoscale Properties 226
8 N8 y0 h0 g$ D7.4 Ceramics 227
6 _" d- D$ z& I1 ^. A" U. V m7.4.1 Rocks 227; U! ^; V7 \) [2 R* H& T
7.4.2 Concrete 2297 v3 @9 Y. K Y" s/ ~) Y7 C
7.4.3 Inorganic Glassy Materials 231
& ^% \$ E7 a7 j G7.4.4 Ice 231
6 h3 G' d0 V$ Y$ y- L1 K8 ~# p: \7.4.5 Piezoelectric Ceramics 2320 `$ ] z: b+ h6 F* i) o! s
7.5 Biological Composite Materials 233
/ `) E% o3 F/ [7 r, j& y. m3 g7.5.1 Constitutive Equations 234; Y* u6 s9 w6 z6 w% N5 I6 j3 t1 p
7.5.2 Hard Tissue: Bone 234
( w0 a8 f* A% K6 l4 U( U; [. j7.5.3 Collagen, Elastin, Proteoglycans 2369 i: H" V$ w t
7.5.4 Ligament and Tendon 237
# f& ]1 N5 }! c# M2 O: S7.5.5 Muscle 2405 \ m$ k A H" l9 G/ @
7.5.6 Fat 243
' K1 w, z% ^& R" b# J7.5.7 Brain 243
" m, w8 y+ M% W3 _! I" ]1 s7.5.8 Vocal Folds 244
7 z2 E0 T. d: F w6 o2 E7.5.9 Cartilage and Joints 244/ @: O1 `" e! k0 A/ I! C7 V, i6 q
7.5.10 Kidney and Liver 246
9 v+ Z5 i# D& X1 Q) k7.5.11 Uterus and Cervix 246
s) a% @, q+ k( N' |3 X+ v7.5.12 Arteries 2472 K# q) A5 h6 X+ k
7.5.13 Lung 248
1 j) u3 P% U- P' G' N7.5.14 The Ear 248
+ ~8 L, {7 s Z2 }, d* C7.5.15 The Eye 2491 _$ T" o+ e' |6 w% s4 c" p6 U
7.5.16 Tissue Comparison 251) \$ o! B) L% J/ g/ H
7.5.17 Plant Seeds 252* v) m# f7 A+ ^# }4 G3 T
7.5.18 Wood 252
; z; }/ `1 j8 A0 r8 o& ^7.5.19 Soft Plant Tissue: Apple, Potato 253
- w& ^( ]) \+ B: m7.6 Common Aspects 253
1 d6 S( z% s; s; _2 i; T. D7.6.1 Temperature Dependence 253, R- z! P: X* ]& ?! v
7.6.2 High-Temperature Background 254
% E! N, T% p8 r5 l) D, w5 \7.6.3 Negative Damping and Acoustic Emission 2554 P& i# _2 R! |) j+ E
7.7 Summary 255
+ b2 ?4 J" R' {* b2 m3 i. j, B7.8 Examples 255
, p5 {& x! Q5 W5 t2 {& V7.9 Problems 256
9 y, x6 F6 x% O& L. d4 BBibliography 257: c- Z0 ^# i4 t" r
! s) r( ]* A( c( J) z. P% ~7 M5 S' d9 L) ?0 K, Y/ V$ a
' h# z# E) [: t. E) e! L% r
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
' M8 I6 E& G' d: ?8.1 Introduction 271& y4 T a' H6 Z. |
8.1.1 Rationale 271
, G& I' D# e% Z8.1.2 Survey of Viscoelastic Mechanisms 2710 x$ R D4 ~" o
8.1.3 Coupled Fields 273
: x5 W# K: t5 c ^8.2 Thermoelastic Relaxation 274
2 X$ Q1 j/ |. \ A& A8.2.1 Thermoelasticity in One Dimension 274# d4 A; @+ L3 i& }# R
8.2.2 Thermoelasticity in Three Dimensions 275
1 T% ~' C# I: M/ T: z; w8 K r8.2.3 Thermoelastic Relaxation Kinetics 276% A. @& {1 z( c6 L! W6 K: s/ L3 a ?
8.2.4 Heterogeneity and Thermoelastic Damping 278
/ \2 x3 m2 `2 C8.2.5 Material Properties and Thermoelastic Damping 280
3 n1 Q+ h$ a" c0 k& z8.3 Relaxation by Stress-Induced Fluid Motion 280( {/ C$ V; G( X$ H! U
8.3.1 Fluid Motion in One Dimension 2801 H V5 v/ E+ ?5 j8 j
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
& k3 d1 d9 n9 B- v2 O& c8.4 Relaxation by Molecular Rearrangement 286
7 f% z9 B5 x- h$ p: U# g8.4.1 Glassy Region 286 M( H% P3 i# _
8.4.2 Transition Region 287
/ J+ E8 W! r7 C8.4.3 Rubbery Behavior 289* K) K3 `3 @ \! j( i7 T2 r
8.4.4 Crystalline Polymers 291" Y" E. ^1 p2 h2 A0 r4 @
8.4.5 Biological Macromolecules 292
7 J# P' F+ {8 _2 e% J7 H8.4.6 Polymers and Metals 292
" ^/ a: r+ ]. c; O% W8.5 Relaxation by Interface Motion 292
, c8 Q ~) n" h* X" q& D. F8.5.1 Grain Boundary Slip in Metals 292
6 U- Z( x5 A8 P# y( J/ S) c8.5.2 Interface Motion in Composites 294) z0 e- U! \7 p/ C* r9 @
8.5.3 Structural Interface Motion 294
! S x, S' ~) L" H. n$ u: ?8.6 Relaxation Processes in Crystalline Materials 294' y- H& p2 {2 U0 Z' z
8.6.1 Snoek Relaxation: Interstitial Atoms 294
2 K- L5 @8 x& G6 J! _- f6 e2 f8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298) o2 w$ ^2 r" J0 q- S( O
8.6.3 Gorsky Relaxation 299/ f( Q: }2 O% M- Y) B3 Q$ J* z7 y K
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
! C3 f0 N: C6 j4 V$ j9 [0 s5 k( }8.6.5 Bordoni Relaxation: Dislocation Kinks 303
0 b+ A- z4 }- K8.6.6 Relaxation Due to Phase Transformations 305
1 f) r! ]7 d$ C+ ~- R8.6.7 High-Temperature Background 314
/ Z0 L |! t% W& [' p# K. ]8.6.8 Nonremovable Relaxations 315
, _ \/ D2 Q4 y8.6.9 Damping Due to Wave Scattering 316
4 V z+ v( i0 Q% ~8.7 Magnetic and Piezoelectric Materials 3162 B8 V2 X- N! D7 z' C
8.7.1 Relaxation in Magnetic Media 316
1 N! W) H! G4 g8.7.2 Relaxation in Piezoelectric Materials 318( c2 B" K- Y, U$ u4 P" k5 q h
8.8 Nonexponential Relaxation 322+ `; i. M7 D7 e# H" _- u# E" b
8.9 Concepts for Material Design 323
9 w. C, B, h. X. R& V9 S8.9.1 Multiple Causes: Deformation Mechanism Maps 323- l2 U3 M% f4 z- U+ M L# y/ I" h
8.9.2 Damping Mechanisms in High-Loss Alloys 326) a, s2 ?3 ^1 M" }3 N9 J: k
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
0 _. r" U1 ^( Y+ C0 f8.10 Relaxation at Very Long Times 3278 }& Z" A# @3 |5 ~: S
8.11 Summary 327
% i+ [" h) y& e7 W+ q2 x8.12 Examples 328: J7 D6 C, L4 s% R
8.13 Problems and Questions 332
* Y0 _" |1 |5 D7 n) C, QBibliography 332
' k# J' E5 ?5 w' [$ m' I) q+ a; U: z7 J9 _- d# Q9 K
- `* D, a0 o l/ r! C9 d4 a
0 [+ g9 [2 |! N* J
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341 e: }" l7 H6 p% g( t
9.1 Introduction 3415 b$ e+ g7 ~8 Z0 A
9.2 Composite Structures and Properties 341
, \1 @* Y! y3 f, Q; U8 \, r$ E9.2.1 Ideal Structures 341
/ N+ H! l9 {; `2 q6 o1 |9.2.2 Anisotropy due to Structure 342
8 `& [9 d3 Q1 F& U2 M8 G9 Y9.3 Prediction of Elastic and Viscoelastic Properties 344
, N' H0 z) a R u% E; R: s9.3.1 Basic Structures: Correspondence Solutions 344; w2 P( ?$ j! h3 a# i" ^
9.3.2 Voigt Composite 345 P8 G2 ?+ t4 q2 k' e2 E* X
9.3.3 Reuss Composite 345
9 I! S! D6 y6 x" Y* [9.3.4 Hashin–Shtrikman Composite 3462 L4 x; K- G0 Q* ^( w& ]
9.3.5 Spherical Particulate Inclusions 347/ @4 x7 b3 D7 U9 I4 w' |: T
9.3.6 Fiber Inclusions 349; d" L) _/ S3 {) p! W8 n- }7 D( v
9.3.7 Platelet Inclusions 349
: m" u/ Z! A G: R$ w7 z7 o9.3.8 Stiffness-Loss Maps 3509 r" Q) C. }3 M1 M: q( J
9.4 Bounds on the Viscoelastic Properties 353
, d6 j ?% i# I a9.5 Extremal Composites 354
C# ~. n" w0 Q8 z* F; Q9.6 Biological Composite Materials 356
: a* f, q7 X2 O9.7 Poisson’s Ratio of Viscoelastic Composites 357
0 Q$ P- \" W8 `0 }& r3 c9 o9.8 Particulate and Fibrous Composite Materials 358
% T% V0 [4 j# C0 j9.8.1 Structure 358+ s1 a2 J7 W' N2 q m& K. x
9.8.2 Particulate Polymer Matrix Composites 359
7 C% b4 N7 |* L5 O" v9.8.3 Fibrous Polymer Matrix Composites 361
- j7 b6 D* F$ L" d3 C7 ]4 J% [9.8.4 Metal–Matrix Composites 362
. L, m) {/ z3 t) E1 E9.9 Cellular Solids 363
3 ~1 P: v( k8 q: U2 _* |/ C# j9.10 Piezoelectric Composites 3662 H0 N% \# N2 h9 [
9.11 Dispersion of Waves in Composites 366- |% |- Q$ B: S V
9.12 Summary 367" R$ h3 k9 d/ H( }1 \+ ^
9.13 Examples 367
E5 {$ N2 a' |, L/ ?" ^9.14 Problems 3703 B4 b7 i s l9 g. ^+ I; r
Bibliography 370
6 J1 ]. y$ J( S6 q3 p7 u) P) `/ c5 G
. z/ {6 r3 n$ _8 S# k
; v. P2 a& E0 a- B4 r. s1 [
4 [( ?4 b0 j7 o( N6 s0 e, n* v- D10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377- N, b) w: M4 q l5 W3 Q8 N& ^
10.1 Introduction 3779 w/ C- P. O0 ^8 h( N2 p
10.2 A Viscoelastic Earplug: Use of Recovery 3777 K8 E: i) r% C9 U& S9 M1 p. a
10.3 Creep and Relaxation of Materials and Structures 378; Y" f% ^- l2 ~
10.3.1 Concrete 378
- G" N% C1 }7 s10.3.2 Wood 378
: A. x/ i& o- l7 M* l0 |% f8 `10.3.3 Power Lines 379
: B( P1 R0 T; U6 b9 a10.3.4 Glass Sag: Flowing Window Panes 380
) E8 D0 H& a4 I3 t. U9 a X' V10.3.5 Indentation: Road Rutting 380
( ~% |% j6 M8 c# t/ o1 s- z10.3.6 Leather 381, k0 _6 C) x& G- Q: Y+ ^; P
10.3.7 Creep-Resistant Alloys and Turbine Blades 3813 u7 w7 h G9 ~+ h8 n- ^
10.3.8 Loosening of Bolts and Screws 382" M# w! s$ b) A" _$ A9 r
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
- }6 ~1 Q8 r" B# @10.3.10 Earth, Rock, and Ice 3858 S" c1 X6 \: j) m; k4 F
10.3.11 Solder 386
7 u6 q7 c: ^( P- l& n1 {5 a2 ]3 a10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
: j" r5 ?& M3 R' e. f10.3.13Tires: Flat-Spotting and Swelling 388! ~9 L; |1 Y/ o! n2 Y. K& N
10.3.14Cushionsfor Seats and Wheelchairs 3885 Y8 T1 [; T% g2 N, w+ q5 t
10.3.15 Artificial Joints 389
' q- I5 s0 O- B) u' w1 e0 o+ C; ]10.3.16 Dental Fillings 389- P$ o/ k. t7 r! A+ v
10.3.17 Food Products 3896 c3 T8 h6 D- M F5 y2 b
10.3.18 Seals and Gaskets 390
0 y: V1 q* J1 ?10.3.19 Relaxationi nM usical Instrument Strings 390
3 C. s* r2 N: T10.3.20 Winding of Tape 391
5 E& ^6 n! c A+ P10.4 Creep and Recovery in Human Tissue 391 r( V# c, V! y) @- m
10.4.1 Spinal Discs: Height Change 391
. d+ f$ Z# D4 Y, F6 C# w& |10.4.2 The Nose 392
: a$ \( n6 o+ G" `9 g10.4.3 Skin 3920 t) |1 c; o/ v. k( Y" ?$ A
10.4.4 The Head 3936 |; B7 s4 ~6 P% j3 g/ O* } B
10.5 Creep Damage and Creep Rupture 394
& Q! O6 ~2 K W( T" _6 C. E% L% i10.5.1 Vajont Slide 394
! e$ X m6 i7 [$ }6 ]2 L10.5.2 Collapse of a Tunnel Segment 394
; R( g' @$ k/ V$ b& S! v3 {10.6 Vibration Control and Waves 394$ n/ d, I p4 ]- T0 g ]! v" H
10.6.1 Analysis of Vibration Transmission 394( _! C) F7 m3 M5 G+ i- [/ J
10.6.2 Resonant (Tuned) Damping 397 w! X( \: u& w$ G. E6 X
10.6.3 Rotating Equipment Vibration 397$ D+ c& M' ~$ y1 B8 s# ^
10.6.4 Large Structure Vibration: Bridges and Buildings 3986 p3 Z) @# e4 W2 }( |. C
10.6.5 Damping Layers for Plate and Beam Vibration 399
* x0 R2 L$ V. f: V9 u; _7 Q/ m; F10.6.6 Structural Damping Materials 400: x- `) O3 i$ V; v" y
10.6.7 Piezoelectric Transducers 402
0 I* Z' v9 o/ E' m2 y; g10.6.8 Aircraft Noise and Vibration 402
6 s0 m) b$ Q/ ~+ }8 E M10.6.9 Solid Fuel Rocket Vibration 4048 `, Q, y- ~# ^$ L
10.6.10 Sports Equipment Vibration 4043 X$ Z* k- A6 F) t- x& Z& o
10.6.11 Seat Cushions and Automobiles: Protection of People 4049 h6 f" I$ m3 i! w
10.6.12 Vibrationi n ScientificI nstruments 406
1 Z( s9 P+ K5 p10.6.13 Waves 406
2 x" c2 X: T: z7 k$ w: [) _$ _10.7 “Smart” Materials and Structures 4076 a* g: I5 V; m$ K, B) Y: s
10.7.1 “Smart” Materials 407
& {9 l& N l& ~" B9 L8 z10.7.2 Shape Memory Materials 408& R2 d* Y3 R! m1 W$ L" c
10.7.3 Self-Healing Materials 409
1 b. k5 p$ S. b# z) z/ |1 ^10.7.4 Piezoelectric Solid Damping 409
) ^% q) w# e' ]+ |! N10.7.5 Active Vibration Control: “Smart” Structures 409
: Z- t8 u& ~# R! A" v. \' w10.8 Rolling Friction 409
; b4 I9 b, }% z4 U10.8.1 Rolling Analysis 410
) Q9 d) M" [1 [( G10.8.2 Rolling of Tires 411% J' t4 H1 ]' R! q
10.9 Uses of Low-Loss Materials 412
" h3 v5 n1 Q- ^. ~. B/ j10.9.1 Timepieces 412
" ^" G$ |8 u: x9 h! f Q( P* n10.9.2 Frequency Stabilization and Control 413
6 W, i, Q4 m6 j8 [2 {10.9.3 Gravitational Measurements 413
; l9 O! i* W7 K% B* A) Z. C10.9.4 Nanoscale Resonators 414
2 |# x7 L9 K. r* e10.10 Impulses, Rebound, and Impact Absorption 414
* P, Z4 B$ p' H+ |4 W9 `4 J10.10.1 Rationale 414
7 e$ r0 C% j) d* [% `3 p" t: F! E10.10.2 Analysis 4152 e/ C( |7 D7 [% a; _1 Y& N/ l
10.10.3 Bumpers and Pads 418 c* m( _% I; y f# ? [
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419" R( P8 n$ A% |/ _9 i3 b; z
10.10.5 Toughness of Materials 419
P3 P/ a& i+ T% u m" }7 n10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
) }* G* V$ m- D10.11Rebound of a Ball 421
' ^% Z8 i- ^) J. m3 }3 D: ^10.11.1 Analysis 4213 t" n) Z! O7 }. @' w+ T* a
10.11.2 Applications in Sports 422/ A8 d1 W5 e6 h# S/ @
10.12 Applications of Soft Materials 424
$ Y6 k; H$ P5 V8 M# r0 G3 ^: y2 P10.12.1 Viscoelastic Gels in Surgery 4245 s: z$ f1 l2 v- U
10.12.2 Hand Strength Exerciser 4242 |) ` V) I7 o. o! I3 i
10.12.3 Viscoelastic Toys 424- B* t( H, E/ P3 @9 x/ u9 Z# |
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
; ~5 @* v! W$ A0 k10.13 Applications Involving Thermoviscoelasticity 425% g! j8 V8 G: ~# C7 V
10.14 Satellite Dynamics and Stability 426
' c) M" P5 W( h$ f: X10.15 Summary 428" o! A+ V+ P' \
10.16 Examples 429% l6 P5 K! w2 a* @
10.17 Problems 431: m. t \4 |" A9 j
Bibliography 431* V4 ?5 g# M5 c2 }% m
# o \; F* C+ _4 K* n
& |0 P9 d- r$ x, R/ U+ U) {1 v
, v6 ^7 |' u* y' \; x! X
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4416 @1 J& w8 J: {! N' C) F: h) s
A.1 Mathematical Preliminaries 441
9 N Q& a5 B3 o1 l2 o0 P+ |A.1.1 Introduction 441
0 U0 M U6 \3 W. o! L2 \A.1.2 Functionals and Distributions 4419 T. Z2 z$ ^. i
A.1.3 Heaviside Unit Step Function 442* [: R4 _+ w7 Q( i3 m% a$ g' M' p
A.1.4 Dirac Delta 442
% u% p" k9 l5 |8 l) H& t( _A.1.5 Doublet 443
( {+ _: L' _ v5 g8 OA.1.6 Gamma Function 445
+ K) I& `! D% T1 uA.1.7 Liebnitz Rule 445
. h* Q: n l: h/ @+ K. YA.2 Transforms 445
6 ~% K$ W {" k: t2 T6 c, l5 ]2 EA.2.1 Laplace Transform 446
: p4 K1 H) C! T$ }$ b- L3 nA.2.2 Fourier Transform 446
0 B3 g$ S( d1 h2 I. L9 u& H! aA.2.3 Hartley Transform 447
; I; l& Z5 F: k$ |. S; nA.2.4 Hilbert Transform 447; l0 p$ g7 e! Q, ?: k+ i
A.3 Laplace Transform Properties 448
1 j* D- O& z1 r- dA.4 Convolutions 4493 e% ~) k# i! X3 N& A7 Z
A.5 Interrelations in Elasticity Theory 451
- K4 n% F& \- s8 a* K0 B* tA.6 Other Works on Viscoelasticity 451 D$ {: D2 \# C# ^
Bibliography 4529 h/ m9 \) n9 U8 W
2 t3 v9 I5 F3 y4 ]( t% g
" `& {: l5 w3 |% V1 ]! TB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
+ C$ ~2 C* k* }8 ~9 aB.1 Principal Symbols 455
s/ ~; y; a6 Z! F+ HIndex 457
K1 L- P3 ~% u1 a/ z" j
5 |/ N6 [; j2 p9 d$ b3 O# a. |3 q( p! {
|
|